
DAQ Introduction
Jack Carlton

University of Kentucky

What is Data Acquisition (DAQ)?

● “DAQ” refers to the system of
electronics used to convert
analog signals from an
experiment and package them
into digital “events”

○ Usually “DAQ” refers to the “software
side”, but sometimes refers to
hardware as well

○ Hardware side also called
“electronics”

● I like to differentiate between the
software and hardware sides

Digitizers
& trigger

processors

...

Array of readout
computers, Midas server

...

D
et

ec
to

rs

Hardware
Side Software Side

j.carlton@uky.edu
1/15

mailto:j.carlton@uky.edu

Proposed Data Acquisition (DAQ) Framework

arXiv:2203.05505

Citation: Testing Lepton Flavor Universality and CKM Unitarity with Rare Pion Decays in the
PIONEER experiment, PIONEER collab (pg. 20, arxiv: 2203.05505)

H
ar

dw
ar

e
Si

de
SW

Si

de
j.carlton@uky.edu

2/15

mailto:j.carlton@uky.edu

Proposed Data Acquisition (DAQ) Framework
arXiv:2203.05505

Citation: Testing Lepton Flavor Universality and CKM Unitarity with Rare
Pion Decays in the PIONEER experiment, PIONEER collab (pg. 21)

So
ftw

ar
e

Si
de

R
eceive

D
ata over
PC

Ie

B
uild

events in
M

idas
“N

earline”
Tools

j.carlton@uky.edu
3/15

mailto:j.carlton@uky.edu

Data Rates
arXiv:2203.01981

● PIONEER DAQ expects data rate of ~3.5GB/s
● This is ~100,000 TB/year
● How do we compress this in real time? (Not in this talk)

○ Fit data, store fit parameters
○ Compress and store residuals, throw some out
○ Graphics Processing Units (GPUs) used for this operation

Citation: PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of
Rare Pion Decays, PIONEER collab (pg. 33)

j.carlton@uky.edu
4/15

mailto:j.carlton@uky.edu

Our Two DAQs

● g-2 modified DAQ
○ Modified for various experiments across the

collaboration (test beam, LXe testing, LYSO testing, …)
● PIONEER DAQ

○ In nascent development state
○ Design catered to PIONEER full experiment necessities

UKY test stand MicroTCA cratesPIONEER ADC schematic drawings

Citation: DAQ electronics status, Lawrence Gibbons (Slide 1)
https://pioneer.npl.washington.edu/cgi-bin/private/ShowDocument?docid=245

j.carlton@uky.edu
5/15

mailto:j.carlton@uky.edu

What is a Field Programmable Gate Array (FPGA)?

● Commonly used for real time data
processing

● Programmable
○ Typically use a software tool called

Vivado
○ Typically programmed using Verilog or

VHDL
○ Use low-level software called “firmware”

● Allows for fast, flexible control of
logic signals to board components

● Building block in almost all of our
hardware (WFD5s, FC7s, AMC13s)

A Xilinx Development Board with a
XC6LX45T FPGA (Spartan-6)

This is the FPGA

j.carlton@uky.edu
6/15

mailto:j.carlton@uky.edu

Teststand DAQ Hardware (Modified g-2 DAQ)

● Differential signal into WFD5
(Waveform Digitizer)

● Trigger signal into FC7 (Flexible
Controller)

● AMC13 (Advanced Mezzanine Card)
gathers data, sends over 10GbE (10
Gigabit Ethernet) to desktop

● MCH (MicroTCA Carrier Hub)
facilitates Desktop↔Crate
communication over 1GbE

● Desktop CPU handles event
processing

● Meinberg gives trigger timestamp to
computer

Differential
Signal(s)

Trigger

WFD5(s)FC7 AMC13(s)

MCH Desktop

Ribbon
Cable

Optical

Pentabus
Cable

CrateO
pticalC

ra
te

Crate
Crate

1GbE
Ethernet

Red - Data
Blue - Trigger
Gray - Control

Crate

Bank

Meinberg

SMA

SMA to D9

To storage

Crate components

PCIe

j.carlton@uky.edu
7/15

mailto:j.carlton@uky.edu

Teststand DAQ Hardware (Modified g-2 DAQ)

j.carlton@uky.edu
8/15

mailto:j.carlton@uky.edu

Teststand DAQ Hardware (Modified g-2 DAQ)

10GbE out (data)
AMC13→desktop
Trigger in AMC13

Trigger out FC7
1GbE MCH in/out (comm.)

FC7 Trigger in

WFD5 5-channel,
differential signal in (no
connection in this picture)

WFD5s M
C
H

A
M
C
1
3

F
C
7

Note: AMC13 and
MCH are half slot
modules

W
F
D
5

W
F
D
5

Crate
Power
Supply

j.carlton@uky.edu
8/15

mailto:j.carlton@uky.edu

PIONEER DAQ Hardware (In a Nascent State)

● Using APOLLO system (no more
µTCA crates)

● Data is moved using “Firefly”
optical flyover system

○ 25 gb/s > 10gb/s links from g-2
● Data received by desktop through

Firefly PCIe cards

Firefly PCIe board

Citation: DAQ backbone exploration, Lawrence Gibbons
https://pioneer.npl.washington.edu/docdb/0000/000023/001/apollo.pdf

j.carlton@uky.edu
9/15

mailto:j.carlton@uky.edu

Midas Framework
● C/C++ (mostly)

package of modules for
○ run control,
○ expt. configuration
○ data readout
○ event building
○ data storage
○ slow control
○ alarm systems
○ Etc.

● Can link with custom
software

Example g-2 Midas Webpage

j.carlton@uky.edu
10/15

mailto:j.carlton@uky.edu

Midas Frontends

● C++ programs operating in the
midas framework

● Typically handle receiving,
processing, and packing data into
midas events

● Simple example frontend
Example g-2 Midas Webpage

List of frontends

j.carlton@uky.edu
11/15

https://www.google.com/url?q=https://github.com/PIONEER-Experiment/data_simulator/blob/main/frontend_simulator/frontend.cxx&sa=D&source=editors&ust=1741621502453569&usg=AOvVaw3Mzlx1gWsW8fokGWY30QEl
mailto:j.carlton@uky.edu

Online Database (ODB)

● GUI on midas webpage
○ Also available command line

● Allows for “on the fly” adjustments
between runs

● Built in configurations:
○ Midas webpage
○ Logger write location
○ Webpage update rate
○ Etc.

● Custom configurations
○ Configure hardware
○ etc.

Example ODB Page on Midas Webpage

j.carlton@uky.edu
12/15

mailto:j.carlton@uky.edu

Custom Software

● Can write “clients” that connect to
midas experiment

○ Python
○ C++

● Allows for user to write software to
fit their needs, for example:

○ Data Quality Monitor
○ Offline analysis scripts
○ Automatic ODB management

Example System Performance Webpage that
Links with Midas

j.carlton@uky.edu
13/15

mailto:j.carlton@uky.edu

Nearline Processing

● Any preliminary processing on the
data before moving to permanent
storage

Examples:

● Data quality monitors (DQM) that
effectively sample and display data

● Building ROOT trees from midas
files (Unpacker, by Sean Foster)

● Moving/Mirroring files

Josh LaBounty’s 2023 testbeam DQM page

j.carlton@uky.edu
14/15

mailto:j.carlton@uky.edu

Offline Processing

● Any processing on the data after it
has been moved to permanent
storage

Examples:

● Creating deposited energy
histograms

● Chaining runs together
● Pretty much any rigorous analysis

Preliminary Energy Sum Histograms from the
2023 Testbeam

j.carlton@uky.edu
15/15

mailto:j.carlton@uky.edu

Auxiliary Slides

Outline

I. [] Introduction and Motivation
A. What is DAQ?
B. Proposed PIONEER DAQ Framework
C. Why do all this? - Data Rates
D. Two DAQs - Why?

II. [] The Hardware Side
A. What is an FPGA?
B. g-2 DAQ Hardware
C. PIONEER DAQ proposed hardware

III. [] The Software Side
A. Midas
B. Frontends
C. “Nearline” Processing
D. “Offline” Processing

Hardware Initialism Cheatsheet
Initialism Meaning Example (if applicable)

DAQ Data Acquisition

ADC Analog-to-Digital Converter

10GbE 10 Gigabit Ethernet

AFE Analog Front End

FPGA Field Programmable Gate Array

CPU Central Processing Unit Intel Core i7-12700K

GPU Graphics Processing Unit NVIDIA A5000

uTCA (or µTCA) Micro Telecommunications Computing Architecture

WFD Waveform Digitizer WFD5

FC Flexible Controller FC7

AMC Advanced Mezzanine Card AMC13 (confusingly, also
FC7 and WFD5)

MCH MicroTCA Carrier Hub

DDR Double Data Rate DDR3, DDR4 (RAM)

PCIe Peripheral Component Interconnect Express PCIe2, PCIe3, …

FPGA Types
Series Example FPGA

Virtex UltraScale+ XCVU9P

Virtex UltraScale XCVU190

Kintex UltraScale+ XCKU15P

Kintex UltraScale XCKU040

Artix UltraScale+ XA7A50T

Artix-7 XC7A200T

Zynq UltraScale+ MPSoC XCZU9EG

Zynq-7000 SoC XC7Z045

Spartan-7 XC7S100

Spartan-6 XC6SLX75

Rough example name breakdown:

XCVU190+1:

● X: Xilinx
● C: Some family indicator (?)
● VU: FPGA Family. "VU" → Virtex

UltraScale family.
● 9: Device capacity or size
● +1,+2,+3: A speed grade for the

FPGA

Why a Differential Signal?

● More resistant to noise → cleaner
signal

● Lower supply voltages can be used
○ reduce power consumption, and allow

for higher operating frequencies.
○ Low Voltage CMOS (LVCMOS) is

3.0–3.3 V

Multiple Crate g-2 DAQ Hardware

● Each crate needs an MCH to
communicate with desktop

○ Another 1GbE link required, ethernet
splitter introduced (see blue 1GbE
cables)

● Each crate needs an AMC13
○ Another 10GbE data link to desktop

introduced (see bottom mint cable)
○ Trigger signal fed from FC7 in first crate

to AMC13 in bottom crate via optical
cable (see orange cable)

● Note: There are two mint optical
cables running towards a desktop
rather than 1 mint cable connecting
both AMC13s

Why the Apollo System?

● CERN + CMS/ATLAS → APOLLO platform
○ Cornell already had a hand in designing boards

for APOLLO system
● Unlike µTCA, the actual data handling

does not need to move through the
backplane

○ More user control
● APOLLO system handles more channels

per optical link → fewer desktops needed
○ APOLLO System ~ 3000 channels/(400

chan/board * 2 boards/computer) ~ 4 computers
○ µTCA System ~ 3000 channels/(60 chan/crate * 2

crates/computer) ~ 30 computers

Citation: DAQ backbone exploration, Lawrence Gibbons
https://pioneer.npl.washington.edu/docdb/0000/000023/001/apollo.pdf

Why Firefly Cables?

Citation: DAQ backbone exploration, Lawrence Gibbons
https://pioneer.npl.washington.edu/docdb/0000/000023/001/apollo.pdf

~ 1000 GB/s

~ 100 GB/s
~ 10 GB/s

Firefly cables moving large amounts of
data before it gets to DAQ computers

FPGAs
sample data

Further processing
and cuts

Optical → More
noise resistant than
serial lines of
similar speeds

Communication with FPGA over PCIe

● Want a midas frontend that
communicates with an
FPGA over PCIe

● This should streamline
implementation when
Cornell finalizes hardware

Example block diagram (made in Vivado) for a PCIe FPGA

Adding More Debugging Diagnostics to g-2 modified DAQ

● Created a more general DQM
page (no assumption on number
of channels/channel mapping)

● Rate limitations were an issue
during 2023 test beam

○ Could only run at ~300Hz
● Added timing diagnostics to

identify bottleneck
● Plan to add CPU, RAM, and

FC7 diagnostic pages as well

Example System Performance Webpage that
Links with Midas

Rate Testing/Improving g-2 modified DAQ

● Analyzed test beam and
UKY teststand
performance data

○ Bottlenecks are due to rare,
long pauses between
events

○ Yet to determine exact
reason for pauses

● Plan to remove Meinberg
card from system, replace
with parallel port system

○ Should be faster and more
straightforward

Citation: Unpacking and analysis of the CC performance banks, Sean
Foster (Slide 9)

Timings of various stages of the data readout
midas frontend

Signal Conditioning

● Want a narrow distribution for
compression. Let ri be the numbers
we compress

● Methods tried:
○ No conditioning
○ Delta encoding:

ri = yi+1-yi
○ Twice Delta Encoding:

ri = yi+2-2yi+1+yi
○ Double Exponential Fit:

ri= yi - (A⋅exp(ati)+ B⋅exp(bti))
○ Shape Fit:

ri =yi- (A⋅T(ti-t0) + B)

No Conditioning

Shape Fit

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Voltage [Arbitrary Units]

Voltage [Arbitrary Units]

Shape Fitting Algorithm

1. Construct a discrete template from sample pulses
2. Interpolate template to form a continuous Template, T(t)
3. “Stretch” and “shift” template to match signal:

[Note: a and b can be calculated explicitly given t0]

4. Compute χ2 (assuming equal uncertainty on each channel i)

5. Use Euler’s method to minimize χ2

Lossless Compression Algorithm

● Rice-Golomb Encoding
○ Let x be number to encode

y = “s”+“q”+”r”
■ q = x/M (unary)
■ r = x%M (binary)
■ s = sign(x)

○ Any distribution
○ Close to optimal for valid choice of

M
○ One extra bit to encode negative

sign
○ Self-delimiting
○ If quotient too large, we “give up”

and write x in binary with a “give
up” signal in front

Value Encoding

-1 011

0 000

1 001

2 1000

Rice-Golomb Encoding (M=2)

Red = sign bit
Blue = quotient bit(s) (Unary)
Yellow = remainder bit (binary)

How to choose Rice-Golomb parameter M

● Generated fake Gaussian data
(centered at zero) with variance σ2

● For random variable X,
M ≈ median(|X|)/2 is a good choice

○ This is the close to the diagonal on the
plot

● σ ≈ 32 for residuals of shape on
wavedream data → M = 16 is a
good choice

G
au

ss
ia

n
N

oi
se

 σ
M

C
om

pression R
atio

Determining Optimal M

waveDREAM test

Compression Ratio from Rice-Golomb Encoding

● Lossless compression factor of ~2

● In agreement with plot from
simulated data on last slide

● Best compression ratio we
achieved

Rice-Golomb Compression on Residuals
(M = 16)

C
om

pr
es

si
on

 R
at

io

Sample Index

Real Time Compression Algorithm

● We choose to let the FE’s GPU and CPU handle compression for flexibility

CPU

GPU

Copy initial
guess, Y(t0)

Allocate
memory for
X,Y(t0),t0*,t,r,r’c

time

Compute initial
guess fit Y(t0)

Initialization
(one time)

 Data loop
(many times)

Copy many
traces, X
(Overwrite)

Wait for
enough
traces…

Launch 1
thread per
trace

Compute t0*,
via χ2
minimization,
r = X-Y(t0*)

Copy r’c, t0*

Use header
info from r’c
to allocate
memory for rc

Allocate
memory for
X,Y,t,r’c

Golomb
encode
r → r’c

Stitch
together rc
from r’c
Store rc, t0*

GPU Benchmarking (Timings)

● Block Size:
○ A GPU parameter, number of

threads per multiprocessor

● Can compress 226 integers
(32-bit) in roughly ⅓ of a second.
→ ~ 0.8 GB/s compression rate

Ti
m

e
[s

]
of 32-bit Integers

Fit + Compression Time using A5000 in PCIe4
(Batch Size = 1024)

Other Conditioning Distributions

Delta Encoding Twice Delta Encoding Double Exponential Fit

Shape Fitting Details
Fit Function

Explicit a(t0) calc

Explicit b(t0) calc

Explicit χ2 calc

Newton’s method

Threshold requirement

Golomb Encoding

● In general, M is an arbitrary choice

● Since computers work with binary,
M = 2x such that x is an integer is a
“fast” choice

○ This is called Rice-Golomb Encoding

● Self delimiting so long as the
information M is provided

Encoding of quotient
part

q output bits

0 0

1 10

2 110

3 1110

4 11110

5 111110

6 1111110

⋮ ⋮

N 111⋯1110

Golomb Encoding Example

Encoding of remainder part

r offset binary output bits

0 0 0000 000

1 1 0001 001

2 2 0010 010

3 3 0011 011

4 4 0100 100

5 5 0101 101

6 12 1100 1100

7 13 1101 1101

8 14 1110 1110

9 15 1111 1111

Choose M = 10, b = log2(M) = 3
2b+1 - M = 16 - 10 = 6
r < 6 → r encoded in b=3 bits
r ≥ 6 → r encoded in b+1=4 bits

Citation: Wikipedia
(https://en.wikipedia.org/wiki/Golomb_coding)

Huffman Encoding

● Requires finite distribution
● Values treated as “symbols”
● Self-delimiting (sometimes

called “greedy”)

Value Frequency Encoding

-1 ≡ a 1 000

0 ≡ b 10 1

1 ≡ c 5 01

2 ≡ d 3 001

Huffman Encoding Example

d

b

a

c

10

10

10da

10

bc

…

“Combine” two lowest
frequencies into tree,
Frequency z = 1+3 = 4

z

Repeat for set
{z,c,b}

da

c

0

10

1
y b

Citation: Wikipedia
(https://en.wikipedia.org/wiki/Huffman_coding)

Theoretical Uncertainty in Compression Ratio from
Gaussian Noise
● ~ 0.1% relative error

Uniform Distribution of Noise effect on Compression Ratio

● Here instead we use a uniform
distribution to generate the noise

● Not much different than gaussian
noise, same conclusions really

Residuals Distribution and Optimal M

M Compression Ratio

1 1.04721105

2 1.21287474

4 1.53114598

8 1.92616642

16 2.09307249

32 2.02975311

64 1.86037914

128 1.66627451

... ...

Lossy Compression Idea

● In lossless compression, Rice-Golomb encodes:
1. Fit parameters
2. Residuals

● If the residuals meet some criteria, we may choose to threw them out just
keeping our fit of the signal.

Example Criteria:

