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What is Data Acquisition (DAQ)?

● “DAQ” refers to the system of 
electronics used to convert 
analog signals from an 
experiment and package them 
into digital “events”

○ Usually “DAQ” refers to the “software 
side”, but sometimes refers to 
hardware as well

○ Hardware side also called 
“electronics”

● I like to differentiate between the 
software and hardware sides
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Proposed Data Acquisition (DAQ) Framework

arXiv:2203.05505

Citation:   Testing Lepton Flavor Universality and CKM Unitarity with Rare Pion Decays in the 
PIONEER experiment, PIONEER collab (pg. 20, arxiv: 2203.05505)
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Proposed Data Acquisition (DAQ) Framework
arXiv:2203.05505

Citation:   Testing Lepton Flavor Universality and CKM Unitarity with Rare 
Pion Decays in the PIONEER experiment, PIONEER collab (pg. 21)
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Data Rates
arXiv:2203.01981

● PIONEER DAQ expects data rate of ~3.5GB/s
● This is ~100,000 TB/year
● How do we compress this in real time? (Not in this talk)

○ Fit data, store fit parameters
○ Compress and store residuals, throw some out
○ Graphics Processing Units (GPUs) used for this operation

Citation:   PSI Ring Cyclotron Proposal R-22-01.1 PIONEER: Studies of 
Rare Pion Decays, PIONEER collab (pg. 33)
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Our Two DAQs

● g-2 modified DAQ
○ Modified for various experiments across the 

collaboration (test beam, LXe testing, LYSO testing, …)
● PIONEER DAQ

○ In nascent development state
○ Design catered to PIONEER full experiment necessities

UKY test stand MicroTCA cratesPIONEER ADC schematic drawings

Citation: DAQ electronics status, Lawrence Gibbons (Slide 1)
https://pioneer.npl.washington.edu/cgi-bin/private/ShowDocument?docid=245
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What is a Field Programmable Gate Array (FPGA)?

● Commonly used for real time data 
processing

● Programmable
○ Typically use a software tool called 

Vivado
○ Typically programmed using Verilog or 

VHDL
○ Use low-level software called “firmware”

● Allows for fast, flexible control of 
logic signals to board components

● Building block in almost all of our 
hardware (WFD5s, FC7s, AMC13s)

A Xilinx Development Board with a
XC6LX45T FPGA (Spartan-6)

This is the FPGA
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Teststand DAQ Hardware (Modified g-2 DAQ)

● Differential signal into WFD5 
(Waveform Digitizer)

● Trigger signal into FC7 (Flexible 
Controller)

● AMC13 (Advanced Mezzanine Card) 
gathers data, sends over 10GbE (10 
Gigabit Ethernet) to desktop

● MCH (MicroTCA Carrier Hub) 
facilitates Desktop↔Crate 
communication over 1GbE

● Desktop CPU handles event 
processing

● Meinberg gives trigger timestamp to 
computer
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Teststand DAQ Hardware (Modified g-2 DAQ)
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Teststand DAQ Hardware (Modified g-2 DAQ)

10GbE out (data) 
AMC13→desktop
Trigger in AMC13

Trigger out FC7
1GbE MCH in/out (comm.)

FC7 Trigger in

WFD5 5-channel, 
differential signal in (no 
connection in this picture)
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PIONEER DAQ Hardware (In a Nascent State)

● Using APOLLO system (no more 
µTCA crates)

● Data is moved using “Firefly” 
optical flyover system

○ 25 gb/s > 10gb/s links from g-2
● Data received by desktop through 

Firefly PCIe cards

Firefly PCIe board

Citation: DAQ backbone exploration, Lawrence Gibbons
https://pioneer.npl.washington.edu/docdb/0000/000023/001/apollo.pdf
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Midas Framework
● C/C++ (mostly) 

package of modules for 
○ run control,
○ expt. configuration 
○ data readout
○ event building 
○ data storage 
○ slow control
○ alarm systems 
○ Etc.

● Can link with custom 
software

Example g-2 Midas Webpage
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Midas Frontends

● C++ programs operating in the 
midas framework

● Typically handle receiving, 
processing, and packing data into 
midas events

● Simple example frontend
Example g-2 Midas Webpage

List of frontends
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Online Database (ODB)

● GUI on midas webpage
○ Also available command line

● Allows for “on the fly” adjustments 
between runs

● Built in configurations:
○ Midas webpage
○ Logger write location
○ Webpage update rate
○ Etc.

● Custom configurations
○ Configure hardware
○ etc.

Example ODB Page on Midas Webpage
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Custom Software

● Can write “clients” that connect to 
midas experiment

○ Python
○ C++

● Allows for user to write software to 
fit their needs, for example:

○ Data Quality Monitor
○ Offline analysis scripts
○ Automatic ODB management

Example System Performance Webpage that 
Links with Midas
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Nearline Processing

● Any preliminary processing on the 
data before moving to permanent 
storage

Examples:

● Data quality monitors (DQM) that 
effectively sample and display data

● Building ROOT trees from midas 
files (Unpacker, by Sean Foster)

● Moving/Mirroring files

Josh LaBounty’s 2023 testbeam DQM page
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Offline Processing

● Any processing on the data after it 
has been moved to permanent 
storage

Examples:

● Creating deposited energy 
histograms

● Chaining runs together
● Pretty much any rigorous analysis

Preliminary Energy Sum Histograms from the 
2023 Testbeam
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Outline

I. [] Introduction and Motivation
A. What is DAQ?
B. Proposed PIONEER DAQ Framework
C. Why do all this? - Data Rates
D. Two DAQs - Why?

II. [] The Hardware Side
A. What is an FPGA?
B. g-2 DAQ Hardware
C. PIONEER DAQ proposed hardware

III. [] The Software Side
A. Midas
B. Frontends
C. “Nearline” Processing
D. “Offline” Processing



Hardware Initialism Cheatsheet
Initialism Meaning Example (if applicable)

DAQ Data Acquisition

ADC Analog-to-Digital Converter

10GbE 10 Gigabit Ethernet

AFE Analog Front End

FPGA Field Programmable Gate Array

CPU Central Processing Unit Intel Core i7-12700K

GPU Graphics Processing Unit NVIDIA A5000

uTCA (or µTCA) Micro Telecommunications Computing Architecture

WFD Waveform Digitizer WFD5

FC Flexible Controller FC7

AMC Advanced Mezzanine Card AMC13 (confusingly, also 
FC7 and WFD5)

MCH MicroTCA Carrier Hub

DDR Double Data Rate DDR3, DDR4 (RAM)

PCIe Peripheral Component Interconnect Express PCIe2, PCIe3, …



FPGA Types
Series Example FPGA

Virtex UltraScale+ XCVU9P

Virtex UltraScale XCVU190

Kintex UltraScale+ XCKU15P

Kintex UltraScale XCKU040

Artix UltraScale+ XA7A50T

Artix-7 XC7A200T

Zynq UltraScale+ MPSoC XCZU9EG

Zynq-7000 SoC XC7Z045

Spartan-7 XC7S100

Spartan-6 XC6SLX75

Rough example name breakdown:

XCVU190+1:

● X: Xilinx
● C: Some family indicator (?)
● VU: FPGA Family. "VU" → Virtex 

UltraScale family. 
● 9: Device capacity or size
● +1,+2,+3: A speed grade for the 

FPGA



Why a Differential Signal?

● More resistant to noise → cleaner 
signal

● Lower supply voltages can be used
○ reduce power consumption, and allow 

for higher operating frequencies.
○ Low Voltage CMOS (LVCMOS) is 

3.0–3.3 V



Multiple Crate g-2 DAQ Hardware

● Each crate needs an MCH to 
communicate with desktop

○ Another 1GbE link required, ethernet 
splitter introduced (see blue 1GbE 
cables)

● Each crate needs an AMC13
○ Another 10GbE data link to desktop 

introduced (see bottom mint cable)
○ Trigger signal fed from FC7 in first crate 

to AMC13 in bottom crate via optical 
cable (see orange cable)

● Note: There are two mint optical 
cables running towards a desktop 
rather than 1 mint cable connecting 
both AMC13s



Why the Apollo System?

● CERN + CMS/ATLAS → APOLLO platform
○ Cornell already had a hand in designing boards 

for APOLLO system
● Unlike µTCA, the actual data handling 

does not need to move through the 
backplane

○ More user control
● APOLLO system handles more channels 

per optical link → fewer desktops needed
○ APOLLO System ~ 3000 channels/(400 

chan/board * 2 boards/computer) ~ 4 computers
○ µTCA System ~ 3000 channels/(60 chan/crate * 2 

crates/computer) ~ 30 computers

Citation: DAQ backbone exploration, Lawrence Gibbons
https://pioneer.npl.washington.edu/docdb/0000/000023/001/apollo.pdf



Why Firefly Cables?

Citation: DAQ backbone exploration, Lawrence Gibbons
https://pioneer.npl.washington.edu/docdb/0000/000023/001/apollo.pdf

~ 1000 GB/s

~ 100 GB/s
~ 10 GB/s

Firefly cables moving large amounts of 
data before it gets to DAQ computers

FPGAs 
sample data

Further processing 
and cuts

Optical → More 
noise resistant than 
serial lines of 
similar speeds



Communication with FPGA over PCIe

● Want a midas frontend that 
communicates with an 
FPGA over PCIe

● This should streamline 
implementation when 
Cornell finalizes hardware

Example block diagram (made in Vivado) for a PCIe FPGA



Adding More Debugging Diagnostics to g-2 modified DAQ

● Created a more general DQM 
page (no assumption on number 
of channels/channel mapping)

● Rate limitations were an issue 
during 2023 test beam

○ Could only run at ~300Hz
● Added timing diagnostics to 

identify bottleneck
● Plan to add CPU, RAM, and 

FC7 diagnostic pages as well

Example System Performance Webpage that 
Links with Midas



Rate Testing/Improving g-2 modified DAQ

● Analyzed test beam and 
UKY teststand 
performance data 

○ Bottlenecks are due to rare, 
long pauses between 
events

○ Yet to determine exact 
reason for pauses

● Plan to remove Meinberg 
card from system, replace 
with parallel port system

○ Should be faster and more 
straightforward

Citation: Unpacking and analysis of the CC performance banks, Sean 
Foster (Slide 9)

Timings of various stages of the data readout 
midas frontend



Signal Conditioning

● Want a narrow distribution for 
compression. Let ri be the numbers 
we compress

● Methods tried:
○ No conditioning
○ Delta encoding: 

ri = yi+1-yi 
○ Twice Delta Encoding: 

ri = yi+2-2yi+1+yi
○ Double Exponential Fit: 

ri= yi - (A⋅exp(ati)+ B⋅exp(bti))
○ Shape Fit: 

ri =yi- (A⋅T(ti-t0) + B)

No Conditioning

Shape Fit
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Shape Fitting Algorithm

1. Construct a discrete template from sample pulses
2. Interpolate template to form a continuous Template, T(t)
3. “Stretch” and “shift” template to match signal:

[Note: a and b can be calculated explicitly given t0] 

4. Compute χ2 (assuming equal uncertainty on each channel i)

5. Use Euler’s method to minimize χ2



Lossless Compression Algorithm

● Rice-Golomb Encoding
○ Let x be number to encode

y = “s”+“q”+”r”
■ q = x/M (unary)
■ r = x%M (binary)
■ s = sign(x)

○ Any distribution
○ Close to optimal for valid choice of 

M
○ One extra bit to encode negative 

sign
○ Self-delimiting
○ If quotient too large, we “give up” 

and write x in binary with a “give 
up” signal in front

Value Encoding

-1 011

0 000

1 001

2 1000

Rice-Golomb Encoding (M=2)

Red     = sign bit
Blue    = quotient bit(s) (Unary)
Yellow = remainder bit (binary)



How to choose Rice-Golomb parameter M

● Generated fake Gaussian data 
(centered at zero) with variance σ2

● For random variable X, 
M ≈ median(|X|)/2 is a good choice

○ This is the close to the diagonal on the 
plot

● σ ≈ 32 for residuals of shape on 
wavedream data → M = 16 is a 
good choice
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Compression Ratio from Rice-Golomb Encoding

● Lossless compression factor of ~2

● In agreement with plot from 
simulated data on last slide

● Best compression ratio we 
achieved

Rice-Golomb Compression on Residuals
(M = 16)
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Real Time Compression Algorithm

● We choose to let the FE’s GPU and CPU handle compression for flexibility

CPU

GPU

Copy initial 
guess, Y(t0)

Allocate 
memory for 
X,Y(t0),t0*,t,r,r’c

time

Compute initial 
guess fit Y(t0)

Initialization 
(one time)

 Data loop
(many times)

Copy many 
traces, X
(Overwrite)

Wait for 
enough 
traces…

Launch 1 
thread per 
trace

Compute t0*,
via χ2 
minimization,
r = X-Y(t0*)

Copy r’c, t0*

Use header 
info from r’c 
to allocate 
memory for rc

Allocate 
memory for 
X,Y,t,r’c

Golomb 
encode 
r → r’c

Stitch 
together rc 
from r’c
Store rc, t0*



GPU Benchmarking (Timings)

● Block Size:
○ A GPU parameter, number of 

threads per multiprocessor

● Can compress 226 integers 
(32-bit) in roughly ⅓ of a second.
→ ~ 0.8 GB/s compression rate

Ti
m

e 
[s

]
# of 32-bit Integers

Fit + Compression Time using A5000 in PCIe4
(Batch Size = 1024) 



Other Conditioning Distributions

Delta Encoding Twice Delta Encoding Double Exponential Fit



Shape Fitting Details
Fit Function

Explicit a(t0) calc

Explicit b(t0) calc

Explicit χ2 calc

Newton’s method

Threshold requirement



Golomb Encoding

● In general, M is an arbitrary choice

● Since computers work with binary, 
M = 2x such that x is an integer is a 
“fast” choice

○ This is called Rice-Golomb Encoding

● Self delimiting so long as the 
information M is provided

Encoding of quotient 
part

q output bits

0 0

1 10

2 110

3 1110

4 11110

5 111110

6 1111110

⋮ ⋮

N 111⋯1110

Golomb Encoding Example

Encoding of remainder part

r offset binary output bits

0 0 0000 000

1 1 0001 001

2 2 0010 010

3 3 0011 011

4 4 0100 100

5 5 0101 101

6 12 1100 1100

7 13 1101 1101

8 14 1110 1110

9 15 1111 1111

Choose M = 10, b = log2(M) = 3
2b+1 - M = 16 - 10 = 6
r < 6 → r encoded in b=3 bits
r ≥ 6 → r encoded in b+1=4 bits

Citation: Wikipedia
(https://en.wikipedia.org/wiki/Golomb_coding)



Huffman Encoding

● Requires finite distribution
● Values treated as “symbols”
● Self-delimiting (sometimes 

called “greedy”)

Value Frequency Encoding

-1 ≡ a 1 000

0 ≡ b 10 1

1 ≡ c 5 01

2 ≡ d 3 001

Huffman Encoding Example

d

b

a

c

10

10

10da

10

bc

…

“Combine” two lowest 
frequencies into tree,
Frequency z = 1+3 = 4

z

Repeat for set
{z,c,b}

da

c

0

10

1
y b

Citation: Wikipedia
(https://en.wikipedia.org/wiki/Huffman_coding)



Theoretical Uncertainty in Compression Ratio from 
Gaussian Noise
● ~ 0.1% relative error 



Uniform Distribution of Noise effect on Compression Ratio

● Here instead we use a uniform 
distribution to generate the noise

● Not much different than gaussian 
noise, same conclusions really



Residuals Distribution and Optimal M

M Compression Ratio

1 1.04721105 

2 1.21287474 

4 1.53114598 

8 1.92616642 

16 2.09307249 

32 2.02975311

64 1.86037914 

128 1.66627451 

... ...



Lossy Compression Idea

● In lossless compression, Rice-Golomb encodes:
1. Fit parameters
2. Residuals

● If the residuals meet some criteria, we may choose to threw them out just 
keeping our fit of the signal.

Example Criteria: 


